Муниципальное автономное общеобразовательное учреждение города Новосибирска

«Лицей №22 «Надежда Сибири»

Корпус 22: г. Новосибирск, ул. Советская, 63, тел. 222-35-15, e-mail: l_22@edu54.ru Корпус 99: г. Новосибирск, ул. Чаплыгина, 59, тел. 223-74-15, e-mail: s_99@edu54.ru

PACCMOTPEHO

на заседании кафедры математического образования, протокол № 1 от 19.08.2025

Mаксунова С.Н.

СОГЛАСОВАНО

Протокол № 3 от 29.08.2025

Заместитель директора

Я Валиц Н.А. Данилова

РАБОЧАЯ ПРОГРАММА

по началам математического анализа

10 - 11 класса (11 ИП)

(уровень среднего общего образования)

(углубленный уровень)

Разработчик:

Максунова Светлана Николаевна, ВКК

Рябова Марина Сергеевна, КПН, ВКК

1. Пояснительная записка

Реализация обеспечивает программы овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного И познавательного развития личности обучающихся. В соответствии с названием концепции математическое образование должно, в частности, решать задачу обеспечения необходимого стране числа выпускников, математическая подготовка которых достаточна для продолжения образования по различным направлениям, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др., а также обеспечения для каждого обучающегося возможности достижения математической подготовки в соответствии с необходимым ему уровнем. Именно на решение этих задач нацелена рабочая программа углублённого уровня. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без хорошей математической подготовки. Это обусловлено тем, что в наши дни растёт число специальностей, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг обучающихся, для которых математика становится значимым предметом, фундаментом образования, существенно расширяется. В него входят не только обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, информатики, физики, экономики и в других областях, но и те, кому математика нужна для использования в профессиях, не связанных непосредственно с ней. Прикладная значимость математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения, функциональные зависимости и категории неопределённости, от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Во многих сферах профессиональной деятельности требуются умения выполнять расчёты, составлять алгоритмы, применять формулы, проводить геометрические измерения и построения, читать, обрабатывать, интерпретировать и представлять информацию в виде таблиц, диаграмм и графиков, понимать вероятностный характер случайных событий. Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым формируют логический стиль мышления. Ведущая роль принадлежит математике в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основы для организации учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления. Обучение математике даёт возможность развивать у учащихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

Приоритетными целями обучения математике в 10–11 классах на углублённом уровне продолжают оставаться:

формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция, производная, интеграл), обеспечивающих преемственность и перспективность математического образования обучающихся;

подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;

развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;

формирование функциональной математической грамотности: умения распознавать математические аспекты в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат

для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Модуль «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данный модуль открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.

Программа составлена для специализированного инженерного класса (профиль IT).

Учебный план на углубленное изучение учебного предмета «Начала математического анализа» в 10 и 11 классах средней школы отводит соответственно 1 и 0,5 учебных часов в неделю в течение каждого года обучения, всего 48 учебных часов, реализуется за счет обязательной части учебного плана.

Программа реализуется в 2024-2026 году.

V	Количест	гво часов
Учебный год	10 класс	11 класс
2024/2025	33	
2025/2026		15

тематическому планированию применяется модульный принцип построения образовательной программы, выделяются следующие модули: теория элементарных функций, уравнения, неравенства и их конструкции, тригонометрия, начала математического анализа, расширение понятия числа: комплексные числа, теория чисел, нестандартные методы решения уравнений, неравенств и их конструкций. Модульный принцип оценивания результатов образовательной деятельности ПО предмету позволяет выстраивать индивидуальную образовательную траекторию и обеспечивать саморазвитие при индивидуальном темпе работы с учебным материалом, контроль и самоконтроль знаний.

Используемые образовательные технологии, в том числе дистанционные

Обучение алгебре и началам математического анализа может осуществляться с использованием дистанционных образовательных технологий (далее ДОТ), которое предполагает

изучение учебного материала обучающимися как при опосредованном взаимодействии с учителем через образовательные платформы, так и при непосредственном взаимодействии с учителем. При применении ДОТ используются платформы: лицейская платформа дистанционного обучения Moodle, ФГИС «Моя школа», ГИС «Электронная школа» Новосибирской области, Сферум.

При обучении вероятности и статистике на уровне основного общего образования используются следующие технологии:

- технологии уровневой дифференциации это организация учебной деятельности учащихся по условным микрогруппам, члены которых близки (сходны) по способностям, интересам, навыкам и умениям в изучении учебного материала, а иногда по психическому состоянию. Используется дифференциация по объему учебного материала; по уровню сложности учебных заданий; по характеру помощи и степени самостоятельности учащиихся.
- групповые и коллективные технологии технологии обучения, при которых ведущей формой учебно-познавательной деятельности учащихся является групповая. При групповой форме деятельности класс делится на группы для решения конкретных учебных задач, каждая группа получает определенное задание (либо одинаковое, либо дифференцированное) и выполняет его сообща под непосредственным руководством лидера группы или учителя.
- информационно-коммуникационные технологии, которые предполагают самостоятельное обучение с отсутствием или отрицанием деятельности учителя; частичную замену (фрагментарное, выборочное использование дополнительного материала); использование тренировочных программ; использование компьютера для вычислений, построения графиков; использование информационно-справочных программ. Используются мультимедийные сценарии уроков; проверка знаний на уроке и дома (самостоятельные работы, математические диктанты, контрольные и самостоятельные работы, онлайн тесты); платформы для подготовки к ЕГЭ.
- проблемное обучение это современная технология образования или подход к организации учебно-воспитательного процесса, основанный на постановке проблемной ситуации, требующей от учащихся её самостоятельного решения. Использование данного типа обучения нацелено на развитие познавательной активности учащихся и навыков самостоятельной деятельности. Учащимся не даётся информация в готовом виде. Знания им необходимо добывать, используя для этого свой опыт деятельности, творческий потенциал, ранее усвоенные знания.
- проектное обучение это педагогическая технология, ориентированная на самостоятельную, исследовательскую и творческую деятельность учащихся, направленную на решение конкретной проблемы или задачи, в проектном обучении ученик становится активным участником образовательного процесса.

При реализации рабочей программы могут быть использованы материалы для подготовки к профилям олимпиады КД НТИ и стандартов Всероссийского чемпионатного движения по профессиональному мастерству «Профессионалы».

Информация о промежуточной аттестации

Промежуточная аттестация осуществляется по окончании учебного модуля с целью проверки степени и качества усвоения материала по результатам изучения тематических модулей и проводится в форме письменных контрольных работ и защиты проектов.

Текущий контроль осуществляются с целью проверки степени и качества усвоения материала в ходе его изучения в следующих формах: самостоятельные и проверочные работы.

Текущий контроль и промежуточная аттестация осуществляются в соответствии с «Положением об осуществлении текущего контроля успеваемости и промежуточной аттестации обучающихся, их формах, периодичности и порядке проведения муниципального автономного общеобразовательного учреждения города Новосибирска «Лицей № 22 «Надежда Сибири» (протокол педагогического совета №1 от 29.08.2023 с изменениями от 22.05.2025).

Итоговая аттестация проводится в соответствии с законодательством РФ.

Промежуточная аттестация по учебному модулю «Начала математического анализа» в 10 классе

№ модульной	Название модуля	Количество часов в модуле	Номер урока ПА	Форма ПА
MP № 1	Понятие производной	18	18	Контрольная работа
MP № 2	Применение производной	15	33	Контрольная работа

Промежуточная аттестация по учебному модулю «Начала математического анализа» в 11 классе

№ модульной	Название модуля	Количество часов в модуле	Номер урока ПА	Форма ПА
MP № 1	Интеграл и его применение	15	15	Контрольная работа

2. Содержание учебного предмета

10 класс

Предел функции в точке. Непрерывность. Промежутки знакопостоянства непрерывной функции. Непрерывность рациональной функции. Метод интервалов.

Задачи, приводящие к понятию производной. Производная функции в точке. Таблица производных. Правила вычисления производных. Механический и геометрический смысл производной. Уравнение касательной к графику функции. Признаки возрастания и убывания функции. Точки экстремума функции. Метод нахождения наибольшего и наименьшего значений функции. Построение графиков функций.

Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.

Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

11 класс

Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.

Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона–Лейбница.

Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел.

Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.

3. Личностные, метапредметные и предметные результаты освоения содержания курса

Освоение учебного модуля «Начала математического анализа» должно обеспечивать достижение на уровне среднего общего образования следующих личностных, метапредметных и предметных образовательных результатов:

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества, представление о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

2) патриотического воспитания:

сформированность российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностное отношение к достижениям российских математиков и российской математической школы, использование этих достижений в других науках, технологиях, сферах экономики;

3) духовно-нравственного воспитания:

осознание духовных ценностей российского народа, сформированность нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного, осознание личного вклада в построение устойчивого будущего;

4) эстетическое воспитание:

эстетическое отношение к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений, восприимчивость к математическим аспектам различных видов искусства;

5) физического воспитания:

сформированность умения применять математические знания в интересах здорового и безопасного образа жизни, ответственное отношение к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), физическое совершенствование при занятиях спортивно-оздоровительной деятельностью;

6) трудового воспитания:

готовность к труду, осознание ценности трудолюбия, интерес к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы, готовность и способность к математическому образованию и самообразованию на протяжении всей жизни, готовность к активному участию в решении практических задач математической направленности;

7) экологического воспитания:

сформированность экологической культуры, понимание влияния социальноэкономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем, ориентация на применение математических знаний для решения задач в области окружающей среды, планирование поступков и оценки их возможных последствий для окружающей среды;

8) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, понимание математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладение языком математики и математической культурой как средством познания мира,

готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения модуля «Начала математического анализа» на уровне среднего общего образования у обучающегося будут сформированы познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия, совместная деятельность.

Познавательные универсальные учебные действия

Базовые логические действия:

выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;

воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные;

выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий;

делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;

проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные суждения и выводы;

выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных

критериев).

Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;

проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;

самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;

прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;

выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

структурировать информацию, представлять её в различных формах, иллюстрировать графически;

оценивать надёжность информации по самостоятельно сформулированным критериям.

Коммуникативные универсальные учебные действия:

воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;

в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения;

представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Регулятивные универсальные учебные действия

Самоорганизация:

составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов, владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;

предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;

оценивать соответствие результата цели и условиям, объяснять причины достижения или не достижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

Совместная деятельность:

понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач, принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей;

участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Освоение учебного модуля «Начала математического анализа» на уровне среднего общего образования должно обеспечивать достижение следующих предметных образовательных результатов:

10 класс

Выпускник научится:

оперировать понятиями предела функции в точке, непрерывности функции в точке, доказывать и применять теоремы об арифметических действиях с пределами функций; оперировать понятием приращения функции в точке, касательной к графику функции;

свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;

свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции; свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;

свободно оперировать понятиями: производной функции в точке, находить производную функции в точке, используя определение; оперировать понятиями первая и вторая производные функции, касательная к графику функции; производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;

использовать геометрический и физический смысл производной для решения задач. строить графики функций с помощью методов математического анализа для исследования функции.

Выпускник получит возможность:

использовать производную для исследования функции на монотонность и экстремумы; находить наибольшее и наименьшее значения функции непрерывной на отрезке; использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком. Строить графики функций с помощью методов математического анализа для исследования функции.

11 класс

Выпускник получит возможность:

свободно оперировать понятиями: первообразная, определённый интеграл, находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона—Лейбница; находить площади плоских фигур и объёмы тел с помощью интеграла; иметь представление о математическом моделировании на примере составления дифференциальных уравнений; решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

4. Тематическое планирование

10 класс

Перечень и название разделов и тем курса по модулям – тематически завершенным содержательным разделам	Количество часов	Практические и лабораторные работы, творческие и практические задания, экскурсии и другие формы занятий, используемые при обучении.
M	одуль 1. Понятие производной (18 часо	в)
Представление о пределе функции в точке и о непрерывности функции в точке Задачи о мгновенной скорости и касательной к графику функции	6	Самостоятельные работы
Понятие производной	3	Самостоятельные работы
Правила вычисления производной	6	Самостоятельные работы
Уравнение касательной	2	Самостоятельные работы
Модульная работа № 1	1	
Модул	ъ 2. Применение производной (15 часо	в)
Признаки возрастания и убывания функции	3	Самостоятельные работы
Точки экстремума функции	2	Самостоятельные работы
Применение производной при нахождении наибольшего и наименьшего значений функции	2	Самостоятельные работы

Вторая производная. Исследование функций	2	Самостоятельные работы
Построение графиков функций	3	Самостоятельные работы
Применение производной в задачах ЕГЭ	2	Самостоятельные работы
Модульная работа № 2 (ДКР. Построение графика функции)	1	

11 класс

Перечень и название разделов и тем курса по модулям – тематически завершенным содержательным разделам	Количество часов	Практические и лабораторные работы, творческие и практические задания, экскурсии и другие формы занятий, используемые при обучении.				
M	Модуль 1. Интеграл и его применение (15 часов)					
Производная показательной и логарифмической функций	3	Самостоятельные работы				
Первообразная. Правила нахождения первообразной	5	Самостоятельные работы				
Площадь криволинейной трапеции. Определённый интеграл	5	Самостоятельные работы				
Вычисление объёмов тел	1	Самостоятельные работы				
Модульная работа № 1	1	Самостоятельные работы				

5. Тематическая карта модулей

Предмет: начала математического анализа

Класс: 10 ИП

Модуль 1. Понятие производной (18 часов)

Содержание модуля	Перечень	Планируемые предметные результаты	Ресурсы
	практических		
	работ		
Представление о пределе	Модульная работа	Оперировать понятиями: функция	УМК
функции в точке и о	Nº 1	непрерывная на отрезке, точка разрыва	Мерзляк А.Г., Номировский
непрерывности функции в точке.		функции, асимптота графика функции.	Д.А., Поляков В.М.
Задачи о мгновенной скорости и		непрерывности функции в точке, доказывать и	
касательной к графику функции.		применять теоремы об арифметических	
Понятие производной.		действиях с пределами функций.	
Правила вычисления		Применять свойства непрерывных	
производной. Производная		функций для решения задач.	
суммы, произведения, частного и		Вычислять производные суммы,	
композиции функций.		произведения, частного, композиции функций	
Производная сложной функции.		и производные сложной функции.	
Уравнение касательной.		Изучать производные элементарных	
		функций.	
		Применять понятия предела и	
		производной для решения задач.	

Предмет: начала математического анализа Класс: $10~\Pi\Pi$

Модуль 2: Применение производной (15 часов)

Содержание модуля	Перечень	Планируемые предметные результаты	
	практических		
	работ		
Непрерывные функции и их	Модульная работа	Оперировать понятиями: функция непрерывная	УМК
свойства. Точка разрыва.	№ 2	на отрезке, точка разрыва функции, асимптота графика	Мерзляк А.Г.,
Асимптоты графиков функций.		функции.	Номировский Д.А.,
Свойства функций непрерывных			Поляков В.М.

на отрезке. Метод интервалов	Применять свойства непрерывных функций для	
для решения неравенств.	решения задач.	
Применение свойств непрерывных	Оперировать понятиями: первая и вторая	
функций для решения задач.	производные функции; понимать физический и	
Первая и вторая производные	геометрический смысл производной; записывать	
функции. Определение,	уравнение касательной.	
геометрический и физический	Использовать геометрический и физический	
смысл производной.	÷	
1	смысл производной для решения задач.	
Применение производной к	Строить график композиции функций с	
исследованию функций на	помощью элементарного исследования и свойств	
монотонность и экстремумы.	композиции.	
Нахождение наибольшего и	Использовать производную для исследования	
наименьшего значения	функции на монотонность и экстремумы; находить	
непрерывной функции на отрезке.	наибольшее и наименьшее значения функции	
Применение производной для	непрерывной на отрезке; строить графики функций на	
нахождения наилучшего решения в	основании проведённого исследования. Использовать	
прикладных задачах, для	производную для нахождения наилучшего решения в	
определения скорости и ускорения	прикладных, в том числе социально-экономических,	
процесса, заданного формулой или	задачах, для определения скорости и ускорения	
графиком. Композиция функций.	процесса, заданного формулой или графиком. Получать	
-11 220	представление о применении производной в различных	
	отраслях знаний	
	orpaema situitiii	

Предмет: начала математического анализа Класс: 11 ИП

Модуль 1: Интеграл и его применение (15 часов)

Triogysib 1: Timer past it ere inpinio	enemie (15 mees)		
Содержание модуля	Перечень	Планируемые предметные результаты	Ресурсы
	практических		
	работ		
Производная показательной и	Модульная работа	Оперировать понятиями: производная,	УМК
логарифмической функций.	Nº 1	первообразная и определённый интеграл.	Мерзляк А.Г., Номировский
Первообразная, основное			Д.А., Поляков В.М.
свойство первообразных.			

Первообразные элементарных	Находить первообразные	
функций. Правила нахождения	элементарных функций и вычислять интеграл	
первообразных.	по формуле Ньютона-Лейбница.	
Интеграл. Геометрический смысл	Находить площади плоских фигур и	
интеграла. Вычисление	объёмы тел с помощью определённого	
определённого интеграла по	интеграла.	
формуле Ньютона–Лейбница.	Знакомиться с математическим	
Применение интеграла для	моделированием на примере	
нахождения площадей плоских	дифференциальных уравнений.	
фигур и объёмов геометрических	Получать представление о значении	
тел.	введения понятия интеграла в развитии	
Примеры решений	математики	
дифференциальных уравнений.		
Математическое моделирование		
реальных процессов с помощью		
дифференциальных уравнений		

6. Приложение к рабочей программе

Учебно-методическое обеспечение учебного процесса предусматривает использование по теории элементарных функций линию УМК Мерзляка. Алгебра (10-11). В состав УМК входят:

- Математика. Алгебра и начала математического анализа. 10 класс: учебник: углубленный уровень / Мерзляк А.Г., Номировский Д.А., Поляков В.М. М.: Просвещение, 2022;
- Алгебра и начала математического анализа. 10 класс. Углубленный уровень. Методическое пособие Буцко Е.В., Мерзляк А.Г. и др. М: Вентана-Граф, 2019
- Алгебра. 10 класс. Самостоятельные и контрольные работы. Углубленный уровень. Мерзляк А.Г., Якир М.С., Полонский В.Б. М: Вентана-Граф: 2021;
- Математика. Алгебра и начала математического анализа. 11 класс: учебник: углубленный уровень / Мерзляк А.Г., Номировский Д.А., Поляков В.М. М.: Просвещение, 2021
- Алгебра и начала математического анализа. 11 класс. Углубленный уровень. Методическое пособие Буцко Е.В., Мерзляк А.Г. и др. М: Вентана-Граф, 2019
- Алгебра. 11 класс. Самостоятельные и контрольные работы. Углубленный уровень. Мерзляк А.Г. М: Вентана-Граф, 2020

Материально-техническое обеспечение:

1. Библиотечный фонд

- 1. Нормативные документы:
 - Проект Примерной рабочей программы среднего общего образования. Математика. Углубленный уровень (для 10—11 классов образовательных организаций)
 - Федеральный государственный образовательный стандарт основного общего образования.
- 2. Учебники по алгебре и началам анализа для 10 и 11 классов.
- 3. Учебные пособия: методическое пособие, дидактические материалы.
- 4. Научная, научно-популярная, историческая литература.
- 5. Справочные пособия (энциклопедии, словари, справочники по математике и т. п.).
- 6. Методические пособия для учителя.

2. Печатные пособия

1. Портреты выдающихся деятелей математики.

3. Информационные средства

- 2. Федеральный центр информационно образовательных ресурсов (ФЦИОР) http://fcior.edu.ru
- 3. Единая коллекция цифровых образовательных ресурсов (ЕК) http://school-collection.edu.ru
- 4. Федеральный портал «Российское образование» http://www.edu.ru
- 5. Российский общеобразовательный портал http://www.school.edu.ru
- 6. Федеральный портал «Информационно коммуникационные технологии в образовании» http://www.ict.edu.ru
- 7. Математические этюды www.etudes.ru
- 8. Фестиваль ученических работ «Портфолио» («Первое сентября») https://portfolio.1september.ru
- 9. Интернет-журнал «Эйдос». Основные рубрики журнала: «Научные исследования», «Дистанционное образование», «Эвристическое обучение». www.eidos.ru/journal/content.htm

- 10. Математика на портале «Открытый колледж» www.college.ru/mathematics
- 11. Головоломки для умных людей. На сайте можно найти много задач (логических, на взвешивание и др.), вариации на тему кубика Рубика, электронные версии книг Р.Смаллиана, М. Гарднера, Л. Кэрролла. www.golovolomka.hobby.ru
- 12. Большая библиотека, содержащая как книги, так и серии брошюр, сборников по математике www.math.ru/lib
- 13. Электронная версия журнала «Квант» www.kvant.mccme.ru
- 14. Математические олимпиады и олимпиадные задачи для школьников. www.zaba.ru
- 15. Сайт поддержки Международной математической игры «Кенгуру» www.kenguru.sp.ru
- 16. Московский центр непрерывного математического образования www.mccme.ru
- 17. Федеральный центр тестированияwww.rustest.ru
- 18. РосОбрНадзорwww.obrnadzor.gov.ru
- 19. Российское образование. Федеральный порталеdu.ru
- 20. Федеральное агенство по образованию РФ ed.gov.ru
- 21. Федеральный совет по учебникам Министерства образования и науки Российской Федерацииhttp://fsu.edu.ru
- 22. Открытый банк заданий по математике http://www.mathgia.ru
- 23. Сайт Александра Ларина http://alexlarin.net/
- 24. Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.
- 25. Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.
- 26. Инструментальная среда по математике.
- 4. Экранно-звуковые пособия

Видеоролики по истории развития математики, математических идей и методов.

- 5. Технические средства обучения
 - 1. Мультимедийный компьютер.
 - 2. Мультимедиапроектор.
 - 3. Интерактивная доска.
- 6. Учебно-практическое и учебно-лабораторное оборудование
 - 1. Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30° , 60°), угольник (45° , 45°), циркуль.
 - 2. Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

Темы проектов

- 1. Парадоксы теории множеств.
- 2. Математическая логика язык математики.
- 3. История возникновения дифференциального и интегрального исчислений.
- 4. Принцип Кавалери.
- 5. А.Н. Колмогоров выдающийся российский математик XX столетия.

Контрольно-измерительные материалы 10 класс Модуль № 1

Демонстрационный вариант контрольной работы по математике по теме: «Понятие производной» 10 кл

(функции будут различные, не только такого типа)

1. Найти производную функции:

а)
$$f(x) = 2 x^3 - \frac{x^2}{2} + \sqrt{3}$$
 б) $f(x) = x^2 \sqrt{x} + 3x^5$; в) $(x^2 - 6x + 5)^2$ 2. Составьте уравнение касательной к графику функции $f(x)$ в точке x_0 .

$$f(x) = \frac{2}{x^2} - x$$
, $x_0 = -1$

3. Решите уравнение:

$$f'(x) = f'(-2)$$

если
$$f(x) = \frac{x^2 - 3x}{x - 4}$$

f'(x) = f'(-2) если $f(x) = \frac{x^2 - 3x}{x - 4}$ 4. Составьте и решите неравенство $f(x) \cdot f'(x) \le 0$

$$f(x) = x^2 - 2x - 3$$

5. Материальная точка движется по закону

$$x(t) = \frac{t^3}{3} - t^2 + 2t - 4$$
 (x – метров, t – в секундах)

Определите скорость точки в момент, когда ускорение точки в момент, когда ее ускорение равно нулю. ее скорость равна 1м/с.

6*. Найдите все значения x, при которых выполняется равенство f'(x) = 0, если

$$f(x) = \cos 2x - x\sqrt{3} \text{ in } x \in [0; 4\pi]$$

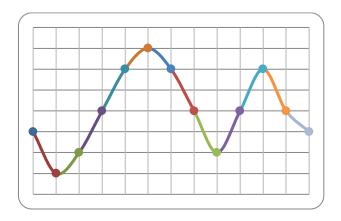
Спецификация контрольной работы по теме: «Понятие производной» 10 кл

иальны ил за нение ния
нение ния
кин

4	уравнения с производной.	Нахождение производной в точке Составление уравнения Решение уравнения Вычисления и запись ответа Нахождение производной	Б+П	5
	решение неравенства с производной	Составление неравенства Решение неравенства Запись ответа		
5	Применение производной при решении физических задач или геометрический смысл производной	Нахождение скорости Нахождение ускорения Составление уравнения для нахождения времени Или геометрический смысл производной Нахождение конечного ответа	П	5
6	Составление и решение уравнения с производной на указанном интервале.	Нахождение производной. Нахождение производной в точке Составление уравнения Решение уравнения повышенного уровня сложности. Вычисления и запись ответа	П	5
				Всего:29

Оценка выполнения работы

Отметка за работу ставится в соответствие со следующей шкалой:


Отметка	«2»	«3»	«4»	«5»
Процент выполнения работы	0 – 45%	46 – 69%	70 – 86%	87 – 100%
Количество баллов	0-13	14-20	21-25	26-29

Модуль № 2

Демонстрационный вариант контрольной работы по математике по теме: «Применение производной» 10 кл

(функции будут различные, не только такого типа)

1. Функция y = f(x) определена на промежутке (-5; 7) на рисунке изображен эскиз графика ее производной y = f'(x). Найдите точки минимума и максимума функции f.

- 2. Найдите промежутки возрастания (убывания) функции, точки экстремума: $f(x) = (x-1)^3 (x-2)^2 + 4$
- 3. Найдите наименьшее и наибольшее значения функции на отрезке: $f(x) = x^4-8x^2+1$ на [-1;3] или $y=-5x^2+x|x-1|$ на промежутке [0;2]
- 4. Число 12 нужно представить в виде суммы двух неотрицательных слагаемых таким образом, чтобы произведение куба одного на удвоенное второе было наибольшим.
- 5. Исследуйте функции и постройте график(возможно применение второй производной):

$$y = \frac{x^2 - 1}{x^2 + 1}$$
 или $y = x^3 - 3x^2$

6. Задание с параметром...(№№ 42.29- 42.34, 45.5, 45.6 учебник 10 кл)

Спецификация контрольной работы по теме: «Применение производной для исследования функций» 10 кл

$N_{\underline{0}}$	Проверяемый элемент	Проверяемые умения и	Уровень	Максимальны
за-	содержания	способы действий	сложности	й балл за
да-			задания	выполнение
ни			(базовый,	задания
Я			повышенный	
)	
1	Условия	Знание необходимого	Б	3
	экстремумов функции	условия экстремума		
		Знание достаточного		
		условия экстремума		
		Применение условий для		
		выбора ответа		

2	Промежутки	Знание условия возрастания	Б	5
	возрастания и	и убывания функции и	ע	J
	убывания функции	умение его применять.		
	уовівания функции	Нахождение производной		
		Применение обобщенного		
		метода интервалов		
		Запись ответа		
3	Нахождение	Знание схемы исследования	Б	5
	наибольшего и	и умение ее применять.	Б	3
	наименьшего	Промежутки		
	значений функции на	знакопостоянства и нули		
	отрезке			
	1	функции		
		Нахождение возрастания,		
		убывания и экстремумы		
		функции		
		Составление таблицы		
		значений		
		Построение графика		
		функции		
4	Нахождение	Составление функции	П	5
	наибольшего и	Применение производной		
	наименьшего	для решения нестандартных		
	значений функции на	задач.		
	отрезке в ходе	Нахождение наибольшего		
	решения задач;	(наименьшего) значения		
		функции на отрезке		
		Оформление решения и		
		запись ответа		
5	Исследование	Знание схемы исследования	П	5
	функции с помощью	функции.		
	производной.	Промежутки		
	Построение графика	знакопостоянства и нули		
	функции	функции		
		1		
		Нахождение возрастания,		
		убывания и экстремумы		
		функции		
		Составление таблицы		
		значений		
		Построение графика		
_	2	функции		
6	Задание с параметром	Умение применять	П	5
	на применение	изученный материал к		
	знаний по теме	заданиям повышенного		
	Применение	уровня сложности.		
	производной	Параметр.		
				Всего:28

Оценка выполнения работы

Отметка за работу ставится в соответствие со следующей шкалой:

Отметка	«2»	«3»	«4»	«5»
Процент выполнения работы	0 – 45%	46 – 69%	70 – 86%	87 – 100%
Количество баллов	0-12	13-19	20-24	25-28

11 класс Модуль № 1

Демонстрационный вариант контрольной работы по математике по теме: «Интеграл и его применение» 11 кл

(функции будут различные, не только такого типа)

- 1. а) Дана функция $f(x)=e^{x}\cos x$. Найдите f'(x), f'(0).
 - б) Дана функция $f(x) = \frac{1}{6} \ln(-2x)$. Найдите f'(x), $f'(-\frac{1}{8})$.
- 2. Вычислите интеграл:

1)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dx}{\cos^2 x};$$
 2)
$$\int_{1}^{2} \left(6x^2 + \frac{1}{x^2}\right) dx.$$
 1)
$$\int_{-\pi}^{\pi} \left(2\sin 2x - \frac{1}{3}\cos \frac{x}{3}\right) dx;$$
 2)
$$\int_{0}^{1} \left(\frac{8}{\sqrt{8x+1}} - x\right) dx.$$

- 3. Найдите первообразную функции $f(x) = 4x^3 + 8x 2$, график которой проходит через точку A(1; 3).
- 4. Найдите площадь фигуры, ограниченной графиками функций $y = 4 x^2$ и y = x + 2.
- 5. Для функции $y = x^2 3x$ найдите такую первообразную, что прямая y = -2x является касательной к её графику.
- 6. Найдите объём тела, образованного вращением вокруг оси абсцисс фигуры, ограниченной линиями $y = \sqrt{\sin x}, \ y = 0, \ x = \frac{\pi}{3}$ и $x = \frac{\pi}{2}$.
- 7. Используя геометрический смысл интеграла, вычислите $\int_{-2}^{2} \sqrt{4-x^2} dx$.
- 8 Устно-письменная часть. Нестандартное задание или баллы полученные в ходе выполнения заданий при изучении курса.

Спецификация контрольной работы

$N_{\underline{0}}$	Проверяемый элемент	Проверяемые умения и	Уровень	Максимал
3a-	содержания	способы действий	сложност	ьный балл
да-	1		и задания	за
НИ			(базовый,	выполнен
Я			повышен	ие задания
			ный)	
1	Вычисление производных	Знание формул вычисления	Б	3
	показательной и	производных. Вычисление		
	логарифмической	производных производных		
	функций	показательной и		

		логарифмической функций, в		
		том числе в точке.		
2	Интеграл. Вычисление определённого интеграла по формуле Ньютона—	Находить первообразные элементарных функций и вычислять интеграл по	Б+П	4
	Лейбница	формуле Ньютона–Лейбница		
3	Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных	Оперировать понятиями: первообразная и определённый интеграл. Находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона—Лейбница	Б	2
4	Геометрический смысл интеграла. Применение интеграла для нахождения площадей плоских фигур	Находить площади плоских фигур	П	3
5	Первообразные элементарных функций. Правила нахождения первообразных. Применение интеграла для решения задач.	Оперировать понятиями: первообразная и определённый интеграл, уметь применять материал для решения задач.	П	3
6	Применение интеграла для нахождения объёмов геометрических тел	Находить объёмы тел с помощью определённого интеграла	П	3
7	Геометрический смысл интеграла	Оперировать понятиями: первообразная и определённый интеграл	П	3
8	Применение изученного материала к задачам повышенного уровня сложности.	Умение применять изученный материал к задачам повышенного уровня сложности.	П	4
			ВСЕГО:	25

Оценка выполнения работы Отметка за работу ставится в соответствие со следующей шкалой:

o internal sur parenty tradition is event better the energy temper internal.					
Отметка	«2»	«3»	«4»	«5»	
Процент выполнения работы	0 – 45%	46 – 69%	70 – 86%	87 – 100%	
Количество баллов	0 - 11	12 - 17	18 - 21	22 - 25	